检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李忠[1] 贺振华[1] 巫芙蓉[2] 王玉雪[2] 巫盛洪[2]
机构地区:[1]成都理工大学 [2]四川石油管理局地球物理勘探公司
出 处:《天然气工业》2006年第3期50-52,161,共3页Natural Gas Industry
摘 要:孔隙度是描述储层品质的一个重要参数,对生产开发和储量估计具有重要的意义。岩石孔隙度和地震波速度之间存在着内在联系,利用地震和测井数据反演井间孔隙度值是储层预测的主要内容之一。文章探讨了单属性和多属性多元线性回归法、神经网络法、几种克里金法、随机模拟法等多种孔隙度反演方法的基本原理、特点和适应条件,并分析对比了孔隙度预测方法在川西BMM构造陆相碎屑岩储层的应用效果。结果表明,在川西地区岩性变化快、砂岩储层非均质性强、孔隙度值变化大的地质条件下,多属性法优于单属性法,数据驱动的克里金法和神经网络法预测效果又优于线性回归法,数据驱动与地质模型约束相结合的随机模拟方法获得了最佳的预测效果,与实际的地质情况非常吻合。Porosity is one of the important parameters for describing reservoir quality and is of great significance to production, development and reserves estimation. Interal relationship exists between porosity and seismic-wave velocity, and inter-well porosity inversion with seismic and logging data is one of the key elements of reservoir prediction. This paper discusses the concepts, characteristics and application conditions of several porosity inversion methods, such as linear regression of single attribute and multivariate linear regression of multiple attributes, neural network, several Kriging methods and stochastic modeling, and compares the application effects of these methods to the terrestrial detrital reservoirs in BMM structure, western Sichuan basin. Under the specific geological conditions of rapid lithological change and strong heterogeneity and large porosity variation of the sandstone reservoirs in the study area, the multiple attribute method is better than the single attribute method, while data-driven Kriging and neural network methods are better than the linear regression method. Prediction results of stochastic modeling method that integrates data-driven method with constraints of geological model are the best and well coincide with the real geologic situations.
关 键 词:储集层 孔隙度 数学模型 测井 地震波 四川盆地 西
分 类 号:P631.4[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46