检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用研究》2006年第4期32-34,共3页Application Research of Computers
基 金:国家自然科学基金资助项目(90204008)
摘 要:关键词的提取是进行计算机自动文本分类和其他文本数据挖掘应用的关键。系统从语言的词性角度考虑,对传统的最大匹配分词法进行了改进,提出一种基于动词、虚词和停用词三个较小词库的快速分词方法(FS),并利用TFIDF算法来筛选出关键词以完成将W eb文档进行快速有效分类的目的。实验表明,该方法在不影响分类准确率的情况下,分类的速度明显提高。Keyword extraction is the sticking point for Automatic Classification and Text Data Mining Application. Taking traits of nature language into consideration, this paper provides a new way called Fast Segmentation (FS) which is based on verb, virtual words and stop words to improve traditional segmentation technique. Then, we filter result of FS by TFIDF Algorithm so that we can classify Web text fast and efficiently. The experiment has indicated that without reducing the correct rate of classification, the speed of processing has improved distinctly.
关 键 词:计算机应用 中文信息处理 关键词提取 WEB文档分类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249