检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学理学院
出 处:《计算物理》2006年第2期189-192,共4页Chinese Journal of Computational Physics
基 金:国家自然科学基金(40375010;60278019资助项目
摘 要:通过对自旋梯可积模型的研究,求出该模型的能量本征值和两体散射矩阵.用可积模型中的坐标Bethe Ansatz方法,首先由薛定谔方程求得能量的本征方程.设定波函数的具体形式,求出本征能量,然后利用能量本征方程和波函数的连续性求出两体散射矩阵.求出单粒子、双粒子和N0个粒子的本征能量,同时求得粒子的两体散射矩阵.自旋梯可积模型的本征能量和两体散射矩阵可通过Bethe Ansatz的方法求得.The eigenvalue and the two-particle scattering matrix are obtained in a spin-ladder model. They are solved with the coordinate Bethe Ansatz method in integrable. The eigenvalue equation is formed with the Schrodinger equation. Then the eigenvalue is solved as the wave function is given. Finally, the two-particle scattering matrix is calculated by the eigenvalue equation and the continuous condition of the wave function. The eigenvalues of one-particle, two-particle and No-particle are solved, and the two-particle scattering matrix is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.132.215.146