检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南昌大学建筑工程学院工程力学实验中心,江西南昌330029
出 处:《南昌大学学报(理科版)》2006年第1期80-83,共4页Journal of Nanchang University(Natural Science)
基 金:国家自然科学基金项目资助项目(10272055)
摘 要:Casey和Naghd i(1992)指出,塑性本构理论中引入的量如塑性应变和背应力张量等至少在理论上必须有明确的定义,从而使理论可进行实验验证。根据Dafalias(1988)和Chen(1999)背应力张量和塑性应变张量的定义,在Naghd i等的理论框架下建立了Lagrange型的有限变形弹塑性本构理论。讨论了Ilyush in公设导致的正交流动法则和对弹性响应泛函的限制条件。进一步讨论了由于使用上述背应力张量的定义对屈服函数形式的限制。As pointed out by Casey and Naghdi,the introduced internal variables,such as plastic strain and back stress in plasticity should be defined, at least theoretically, so that the theory can be testable. In the present paper based on the definitions of plastic strain and back stress in Dafalias and Chen and Zhao , a Lagrangian finite plasticity theory is constructed in the theory framework by Naghdi et al. The normal flow rule is derived by the method in Fosdick and Volkmann using Ilyushin's postulate. With the help of Stoke's theorem ,the restriction condition of elastic - response functional is obtained. From the definition of back stress, the given yield function completely determines the back stress. Accordingly in the present paper the restricted form of yield functions is discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145