非绝热几何量子计算及拓扑量子门  被引量:3

Non-adiabatic geometric quantum computation and topological quantum gates

在线阅读下载全文

作  者:高玉梅[1] 胡连[1] 

机构地区:[1]华南师范大学物理与电信工程学院

出  处:《量子电子学报》2006年第2期183-190,共8页Chinese Journal of Quantum Electronics

基  金:国家自然科学基金资助项目(10204008和10474022)

摘  要:精确求解了自旋-1/2粒子在旋转磁场下的Bloch方程和Schrodinger方程。用此问题的循环解, 得到了Aharonov-Anandan(AA)几何相和动力学相的解析结果,并用正交态方法构造了具有和乐几何量子计算优点的非绝热几何量子门。基于一般的SU(2)循环演化条件,还构造了只依赖轨道的绕数和扭结数的普适拓扑量子门。最后建议用非对称的约瑟夫森结纳米电路实现所构造的各种量子门。The rigorous solutions of Bloch and Schro··dinger equations for spin-1/2 particle under the rotating magnetic field are obtained. The exact expressions of AA geometric and dynamic phases have been obtained. Using an orthogonal method, non-adiabatic geometric quantum gates are obtained with all advantages of holonomic geometric quantum gates. Based on the cyclic condition of general evolution, the universal topological gates are constructed only by the winding number and knot number. Finally, we propose with asymmetric Josephson junction nano-circuit (JJNC) experiment to implement all topological quantum gates.

关 键 词:量子光学 非绝热几何量子计算 正交态方法 准平行传输 拓扑量子门 

分 类 号:O413.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象