检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南师范大学物理与电信工程学院
出 处:《量子电子学报》2006年第2期183-190,共8页Chinese Journal of Quantum Electronics
基 金:国家自然科学基金资助项目(10204008和10474022)
摘 要:精确求解了自旋-1/2粒子在旋转磁场下的Bloch方程和Schrodinger方程。用此问题的循环解, 得到了Aharonov-Anandan(AA)几何相和动力学相的解析结果,并用正交态方法构造了具有和乐几何量子计算优点的非绝热几何量子门。基于一般的SU(2)循环演化条件,还构造了只依赖轨道的绕数和扭结数的普适拓扑量子门。最后建议用非对称的约瑟夫森结纳米电路实现所构造的各种量子门。The rigorous solutions of Bloch and Schro··dinger equations for spin-1/2 particle under the rotating magnetic field are obtained. The exact expressions of AA geometric and dynamic phases have been obtained. Using an orthogonal method, non-adiabatic geometric quantum gates are obtained with all advantages of holonomic geometric quantum gates. Based on the cyclic condition of general evolution, the universal topological gates are constructed only by the winding number and knot number. Finally, we propose with asymmetric Josephson junction nano-circuit (JJNC) experiment to implement all topological quantum gates.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28