检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湘潭大学基础力学与材料工程研究所,湘潭411105 [2]湘潭大学计算与应用数学研究所,湘潭411105
出 处:《固体力学学报》2006年第1期77-82,共6页Chinese Journal of Solid Mechanics
基 金:国家自然科学基金项目(10372087;10376031);高等性能科学计算研究项目(2005CB321702);湖南省教育厅资助项目(03C451);湘潭大学校级青年骨干教师计划资助
摘 要:在最小二乘意义下提出了一种计算复合材料等效弹性性能的有限元方法.这种方法由于考虑了等效弹性张量各分量之间的耦合关系,所求得的等效弹性常数比传统方法更可靠,可适用于求解含任意形状的夹杂和夹杂物问题.通过算例计算了在不同弹性模量对比度下两相复合材料的等效弹性性能,并与相关的理论及数值结果进行了比较,结果表明,利用该方法计算含夹杂复合材料等效弹性常数是可行的.This paper presents a finite element method for predicting the effective elastic properties of composite materials based on the least square method. Since the coupled relations between components of the effective modulus are considered in this method, the effective modulus calculated by the finite element iteration procedure are more reliable than those by self-consistent finite element approach. The method can be applied to the problems of inclusion with any geometry shapes. As an application of this method, the effective elastic properties are derived for a two-phase particulate composite material with different modulus contrasts, and some comparisons with the related theoretical and numerical results are discussed in detail. It is found that our approach is feasible for predicting the effective elastic properties of composite materials.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.224