检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHEN Gang FAN Yun YUAN Yua
机构地区:[1]School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China [2]School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, Huhei, China [3]School of Computer, Wuhan University, Wuhan 430072, Hubei, China
出 处:《Wuhan University Journal of Natural Sciences》2006年第2期339-342,共4页武汉大学学报(自然科学英文版)
基 金:SupportedbytheNationalBasicResearchProgram(973ProgramG1999075102)
摘 要:Let G be a finite group with order g and S be a subring of the algebraic number field which contains the integral extension over Z generated by a g-th primitive root co of unity, and R(G) be the character ring of G. The prime spectrum of the commutative ring S×Z R(G) iv denoted by Spec(S×Z R(G)) and set π={p|p is a rational prime number such that p^-1 S}. We prove that when G is a regroup, a π'-group, or a finite Abelian group, the number of the connetted components of Spec( S×Z R (G) ) coincides with the number of the π-regular classes in G,Let G be a finite group with order g and S be a subring of the algebraic number field which contains the integral extension over Z generated by a g-th primitive root co of unity, and R(G) be the character ring of G. The prime spectrum of the commutative ring S×Z R(G) iv denoted by Spec(S×Z R(G)) and set π={p|p is a rational prime number such that p^-1 S}. We prove that when G is a regroup, a π'-group, or a finite Abelian group, the number of the connetted components of Spec( S×Z R (G) ) coincides with the number of the π-regular classes in G,
关 键 词:prime spectrums connected components π-regular conjugacy classes
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201