关于完备随机内积模中的Lax-Milgram定理的注记  

A Note on the Lax-Milgram Theorem in Complete Random Inner Product Modules

在线阅读下载全文

作  者:郭铁信[1] 周国军[1] 

机构地区:[1]厦门大学数学科学院,福建厦门361005

出  处:《数学研究》2006年第1期51-56,共6页Journal of Mathematical Study

基  金:国家自然科学基金资助项目(10471115)

摘  要:设(S,X)为数域K上以σ-有限测度空间(Ω,A,μ)为基的完备的RIP-模,而且α:S×S→L(μ,K)满足如下条件:(A)存在ξ∈L+(μ),使得a(p,q)ξ·X^p·X^q,p,q∈S;(B)a是coercive(即,存在η∈L+(μ),使得a(p,p)η·X^p2,p∈S且μ({ωη(ω)=0})=0);(C)对每个q∈S,a(·,q):S→L(μ,K)是模同态,且对每个p∈S,a(p,ξq1+ηq2)=ξ-a(p,q1)+η-a(p,q2),q1,q2∈S及ξ,η∈L(μ,K).则存在唯一的连续模同态A:S→S使A-1存在且μ-a.s.有界,还满足:(1)a(p,q)=XA(p),q,p,q∈S;(2)X^A-1(p)1ηX^p,p∈S.Let (S,X) be a complete random inner product module over the scalar field K with base a σ-finite measure space (Ω,A,μ), and α:S×S→L(μ,K) satisfy the following:(A) there exists ξ∈L^+(μ such that |α(p,q)≤ξ·Xp^-·Xq^- for ang p,q∈S; (B) a is coercive (namely, there exists η∈L^+(μ) such that |α(p,p)|≥η·Xp^-z p∈S and μ((ω)|η(ω)=0))=0);(C)α(·,q):S→L(μ,K)is module homomophism for any q∈S,and for every p∈S the following also holds:α(p,ξq1+ηq2)=ξa(p,q1)+η^-α(p,q2),for and q1,q2∈ S, for ang ξ,η∈L(μ,K).Then there exists s unique continuous module homomorphism A:S→S such that A^-1 exists and is μ-μ.s.bounded,further the following also hold; (1)α(p,q)=XA(p),q,for ang p,q,∈S;(2)XA^--1(p)≤1/ηxp^-,for ang p∈S.

关 键 词:完备随机内积模 几乎处处有界的随机线性泛函 Riesz表示型定理 Lax—Milgram定理 

分 类 号:O177.39[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象