用多种随机建模方法综合预测储层微相  被引量:41

Integrative prediction of microfacies with multiple stochastic modeling methods

在线阅读下载全文

作  者:尹艳树[1] 吴胜和[1] 张昌民[2] 李少华[2] 张尚锋[2] 

机构地区:[1]中国石油大学资源与信息学院,北京102249 [2]长江大学地球科学系,湖北荆州434023

出  处:《石油学报》2006年第2期68-71,共4页Acta Petrolei Sinica

基  金:国家重点基础研究发展规划(973)项目(2001CB209106)"低效气藏的形成机理及地质模式研究";中国石化集团公司科技攻关项目(P031033)"深层低渗难动用储量开发配套技术"部分成果

摘  要:提出了将多种随机建模方法综合预测储层微相的新方法。该方法是利用基于目标的方法较好地再现了简单几何形态目标分布的特点;基于象元的方法再现了复杂空间展布目标的特点。建立了反映实际储层微相分布的高精度储层地质模型,给出了具体建模流程。以濮城油田水下扇储层为例,将基于目标的储层目标层次建模方法与基于象元的序贯指示建模方法相结合,从而获得濮城油田沙三中亚段微相储层地质模型。模拟结果检验表明,建模效果较好。A new comprehensive method for predicting reservoir rnicrofacies by integrating multiple stochastic modeling methods was presented. The high-resolution reservoir microfacies model was constructed with the object-based methods which can show the crisp shape of microfacies and with the pixel-based methods which can reproduce the complex distribution of microfacies. A high-precision reservoir geological model was established, and a general modeling flowchart was given. Taking the subaqueous fan reservoir of Puchertg Oilfield in Dongpu Depression as an example, the object-based stochastic modeling method was integrated with the pixel-based sequential indicator stochastic modeling method to construct the microfacies distribution model of Es3^2 in Pucheng Oilfield. The modeling result is well matched with the real distribution of the reservoir microfacies of Pucheng Oilfield.

关 键 词:储层地质模型 随机建模方法 沉积微相 储层预测 濮城油田 

分 类 号:TE319[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象