Structure and Optical Behavior of Nanocomposite Hybrid Films of Well Monodispersed ZnO Nanoparticles into Poly (vinylpyrrolidone)  

Structure and Optical Behavior of Nanocomposite Hybrid Films of Well Monodispersed ZnO Nanoparticles into Poly (vinylpyrrolidone)

在线阅读下载全文

作  者:Wei FENG Huichun TAO Yan LIU Yichun LIU 

机构地区:[1]College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China [2]Center for Advanced Opto-electronic Functional Material Research, Northeast Normal University, Changchun 130024, China

出  处:《Journal of Materials Science & Technology》2006年第2期230-234,共5页材料科学技术(英文版)

基  金:This work was supported by the National Natural Science Foundation of China (No. 60376009) for the financial support.

摘  要:We fabricated an inorganic-polymeric photoluminescent thin film based on ZnO nanoparticles, which were grown directly in the poly(vinylpyrrolidone) (PVP) matrix. The microstructure, composition, thermal stability, and the temperature-dependent photoluminescence of the thin film were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicated that all the ZnO nanoparticles with a polycrys talline hexagonal wurzite structure were well separated from each other and were dispersed in the polymeric matrix homogeneously and randomly. Raman spectrum (Raman) showed a typical resonant multi-phonon process within the hybrid thin film. The shifts of infrared bands for PVP in the hybrid film should be attributed to strong coulombic interaction between ZnO and polymeric matrix. The stability of the hybrid film and the effect of the perturbation of ZnO on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). The ultraviolet-visible adsorption (UV-vis) showed distinct excitonic features. The photoluminescent spectrum (PL) of the ZnO nanoparticles modified by PVP molecules showed markedly enhanced ultraviolet emission and significantly reduced green emission, which was due to the Perfect surface passivation of ZnO nanoparticles. Temperature dependent photoluminescent spectrum studies suggested that the ultraviolet emission was associated with bound exciton recombination.We fabricated an inorganic-polymeric photoluminescent thin film based on ZnO nanoparticles, which were grown directly in the poly(vinylpyrrolidone) (PVP) matrix. The microstructure, composition, thermal stability, and the temperature-dependent photoluminescence of the thin film were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results indicated that all the ZnO nanoparticles with a polycrys talline hexagonal wurzite structure were well separated from each other and were dispersed in the polymeric matrix homogeneously and randomly. Raman spectrum (Raman) showed a typical resonant multi-phonon process within the hybrid thin film. The shifts of infrared bands for PVP in the hybrid film should be attributed to strong coulombic interaction between ZnO and polymeric matrix. The stability of the hybrid film and the effect of the perturbation of ZnO on the stability were determined by means of the thermogravimetric analysis (TG) and differential thermal analysis (DTA). The ultraviolet-visible adsorption (UV-vis) showed distinct excitonic features. The photoluminescent spectrum (PL) of the ZnO nanoparticles modified by PVP molecules showed markedly enhanced ultraviolet emission and significantly reduced green emission, which was due to the Perfect surface passivation of ZnO nanoparticles. Temperature dependent photoluminescent spectrum studies suggested that the ultraviolet emission was associated with bound exciton recombination.

关 键 词:Thin film ZnO Poly (vinylpyrrolidone) PHOTOLUMINESCENCE 

分 类 号:O484.41[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象