检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮海工学院数理科学系,江苏连云港222005 [2]大连轻工业学院运筹学研究所,辽宁大连116034
出 处:《数学的实践与认识》2006年第3期225-230,共6页Mathematics in Practice and Theory
基 金:国家自然科学基金资助项目(78970025)
摘 要:基于一个历史实例及假定:①三步矩阵对策中赢得矩阵都不变,②每步都是局中人1先行动,③对于每步对策,局中人2观测不到对手究竟使用了何策略;但局中人1可以观测到对手所用的策略,建立了三步矩阵对策上的无中生有计(《三十六计》中的第七计)的对策模型.研究了当局中人2中计,半识破和完全识破对手的无中生有计时的赢得和所用的策略的情况.并用上述实例对模型作了说明.This paper is supported by a historical living example and the assumption: ① winning matrix is constant in three-stage game, ② player 1 first takes a action in each stage, and ③ for each stage game, the player 2 can not observe which pure strategy the opponent is using; the player 1 can observe his opponent's that. We shall make a game model of nothing yielding fruit trick (the seventh one in "the thirty-six stratagems") on three-stage matrix game. Then we study the player 2's winning and used pure strategies when he is trapped into, semi-see through and whole-see through the opponent's nothing yielding fruit trick, respectively. Finally, we show the model by the above-mentioned historical living example.
关 键 词:三步矩阵对策 无中生有计 中计 半识破 完全识破 将计就计
分 类 号:O225[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145