The Law of Iterated Logarithm of Rescaled Range Statistics for AR(1) Model  被引量:2

The Law of Iterated Logarithm of Rescaled Range Statistics for AR(1) Model

在线阅读下载全文

作  者:Zheng Yan LIN Sung Chul LEE 

机构地区:[1]Department of Mathematics, Zhejiang University [2]Department of Mathematics, Yonsei University

出  处:《Acta Mathematica Sinica,English Series》2006年第2期535-544,共10页数学学报(英文版)

基  金:supported by NSFC(10071072) ;supported by SRFDP(200235090);support by the BK21 Project of the Department of Mathematics,Yonsei University;the Interdisciplinary Research Program of KOSEF 1999-2-103-001-5 and com2MaC in POSTECH

摘  要:Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.

关 键 词:Rescaled range statistics Law of iterated logarithm AR(1) model 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象