检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李薇[1] 胡志方[2] 李显路[1] 汪佳荣[3] 王永忱[3]
机构地区:[1]河南油田分公司石油勘探开发研究院,河南南阳473132 [2]中国地质大学(北京)能源学院,北京100083 [3]河南石油勘探局,河南南阳473132
出 处:《石油天然气学报》2006年第1期32-33,共2页Journal of Oil and Gas Technology
摘 要:宝浪油田油气层物性较差,属于低孔、低渗、低显示油气层,油气层评价有一定难度,仅用单一的识别模式会遗失部分油气层,应用油藏物理学、渗流理论、神经网络等理论,根据试油资料,测井、录井信息,建立交会图法、模式识别和人工神经网络等宝浪油田油气层评价标准,并在实际解释中得以应用,取得了较好的效果。The physical properties of oil and gas in Baolang Oilfield are poor,which belongs to the reservoirs of low porosity,low permeability and low indication,and there exists some difficulties in oil and gas evaluation.Some of the reservoirs would miss if only single recognition pattern is used for evaluation.Thus based on formation test data and information of log and well logging,standards of crossplot,pattern recognition,artificial neural networks are established for reservoir evaluation in Baolang Oilfield by using the theories of reservoir physics,percolation and neural networks,the standards are used in interpretation and better result is achieved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229