检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南师范大学经济管理学院信息管理系,广州510631 [2]中山大学数学与计算科学学院,广州510275
出 处:《计算机科学》2006年第4期145-147,共3页Computer Science
基 金:国家自然科学基金(基金编号:10371135)
摘 要:针对大样本支持向量机内存开销大、训练速度慢的缺点,本文提出了基于聚类支持向量机,运用 k-mean 对样本聚类,压缩样本量,构造初始超平面,筛选出靠近超平面的支持类和可能支持向量,重新构造决策超平面。实验表明。在保持泛化精度基本一致前提下,改进算法的训练速度明显提高。Training a support vector machines on a data set of huge size exists one problem with stow training process. In this paper,we use a modified support vector machines clustering-based support vector machines to resolve this problent It speeds up the training process lastly comparing with conventional support vector machines under the almost same classification precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38