检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学航空航天与力学学院,上海200092
出 处:《同济大学学报(自然科学版)》2006年第4期443-447,共5页Journal of Tongji University:Natural Science
基 金:国家自然科学基金重点资助项目(10432030);国家杰出青年科学基金资助项目(10125209)
摘 要:将功能梯度悬臂梁作为平面应力问题处理.根据正交各向异性弹性体的基本方程,引入应力函数,假设所有材料常数沿厚度方向按同一函数规律变化,采用弹性力学半逆解法,求得功能梯度悬臂梁在端部集中力和力矩作用下的解析解.所得到的解,对任意梯度函数均成立,且退化到各向同性均匀弹性情况下的结果,与已有的理论解相一致.对弹性模量分别按指数函数和幂函数梯度变化的算例进行了分析,结果显示功能梯度梁的轴向位移仍近似直线变化.Based on the semi-inverse method, an analytical solution is obtained for a functionally graded cantilever-beam that is clamped at one end and subjected to a concentrated force and a couple at another end. The problem is treated as a plane stress case of an orthotropic elastic body. The mechanical properties of the material have been assumed to have the same dependence on the height-coordinate. This solution is valid for arbitrary gradient functions and it can play as a benchmark result for assessing oth- er approximate methodologies or as a basis for establishing simplified functionally graded beam theories. Degenerate results for isotropic homogeneous elastic case are coincided well with existing analytical solutions. Some numerical examples are also given by assuming an exponential gradient function.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249