检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学,天津市南开区300072
出 处:《电网技术》2006年第8期71-75,共5页Power System Technology
摘 要:根据电力系统负荷序列的混沌特性,提出将其划分为基本混沌负荷分量和外部随机因素负荷分量,依据不同的理论分别构造预测模型。前者通过混沌动力学机理和动态递归时延神经网络融合来构造模型;后者在依据日类型和气象特征进行数据挖掘聚类的基础上利用统计分析与智能识别融合来构造模型。大量的仿真计算证明了所提出的短期负荷预测模型能有效保证全年的预测精度及其稳定性,对夏季高温区和特殊类型日的预测精度有明显提高。According to chaotic features of power load time series, it is proposed that at first the load time series are divided into basic chaotic load component (BCLC) and external stochastic factor load component (ESLC), and the forecasting models for the two components are built separately by different theories. The forecasting model of BCLC is constructed based on the fusion of chaotic dynamical mechanism and recursive time-delay neural network; the forecasting model of ESLC is constructed by the fusion of statistical analysis and intelligent recognition on the basis of the clustering of data mining considering the date type and the external meteorological factors. A lot of simulation proves that the proposed short-time load forecasting model can effectively ensure year-round forecasting precision and stability, especially, the forecasting precisions for high temperature periods in summer and special holiday periods are evidently improved.
关 键 词:短期负荷预测 模式识别 混沌特性 数据挖掘 电力系统
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145