检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宇世航[1]
机构地区:[1]齐齐哈尔大学理学院,黑龙江齐齐哈尔161006
出 处:《黑龙江大学自然科学学报》2006年第2期257-259,264,共4页Journal of Natural Science of Heilongjiang University
摘 要:用Bootstrap法估计随机变量的概率分布广泛适用于样本为独立同分布情形.立足于考虑随机变量序列{Xn,n≥1}为NA相协样本条件下均值X-n的Bootstrap逼近问题,首先定义了强平稳组间独立的负相协样本,然后对样本分成k组情况下X-n的k个刀切虚拟值Yi(i=1…k)赋予质量1k,得到“经验分布函数Fk*,从F*k中抽取k个独立样本Y1*,…,Yk*,用n(Yk*-Xn)的条件分布去模拟n(Xn-μ)的分布,最后证明其相合性成立.Bootstrap method of estimating probability distribution of random variables is available for sample of I. I. D. Bootstrap approximate in valid of NA sample mean - value is studied. In the case that sample is divided into k classes, negative association sample between strongly stationary and independent classes is first defined, then the 1 jackknife virtual value Yi( i = 1…k) ofXn is given the mass 1/k. From which, the empirical distribution function Fk^* are obtained. The independent sample Yi^* ,…, Yk^* is extracted from Fk^*. It is shown that if the distribution √n(Yk^*-μ) is simulated by the conditional distribution of √n(Yk^*-Xn),then the consistency holds.
关 键 词:NA序列 BOOTSTRAP逼近 样本均值
分 类 号:O212.7[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.200.134