检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学管理学院,天津300072
出 处:《系统工程理论方法应用》2006年第2期133-138,共6页Systems Engineering Theory·Methodology·Applications
基 金:国家自然科学基金资助项目(70301006)
摘 要:使用贝叶斯方法估计了正态逆高斯扩散模型,该方法首先使用Eu ler方法对连续过程进行离散化,用离散过程的似然函数做为模型参数的近似似然函数。证明了M CM C方法是分析正态逆高斯扩散模型的有效工具,由M CM C方法抽样所得的后验分布可以用来进行统计推断。模拟试验表明:正态逆高斯扩散能够体现资产收益的许多经验特征,如泰勒效应、尖峰厚尾等。In this paper we propose a Bayesian method to estimate the normal inverse Gaussian (NIG) diffusion model. The approach is based on the Markov chain Monte Carlo (MCMC) method with the likelihood of the discredited process as the approximate posterior likelihood. We demonstrate that the MCMC method provides a useful tool in analyzing NIG diffusion. In particular, quantities of posterior distributions obtained from the MCMC outputs can be used for statistical inference. The MCMC method is based on Euler scheme. Our simulation study shows that the NIG diffusion exhibits many of the stylized facts about asset returns documented in the discrete-time financial econometrics literature, such as the Taylor effect, a slowly declining autocorrelation function of the squared returns, and thick tails.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15