Associative Cones and Integrable Systems  

Associative Cones and Integrable Systems

在线阅读下载全文

作  者:Chuu-Lian TERNG 

机构地区:[1]Dedicated to the memory of Shiing-Shen Chern

出  处:《Chinese Annals of Mathematics,Series B》2006年第2期153-168,共16页数学年刊(B辑英文版)

基  金:Partially supported by NSF grant DMS-0529756.

摘  要:Abstract We identify R^7 as the pure imaginary part of octonions. Then the multiplication in octonions gives a natural almost complex structure for the unit sphere S^6. It is known that a cone over a surface M in S^6 is an associative submanifold of R^7 if and only if M is almost complex in S^6. In this paper, we show that the Gauss-Codazzi equation for almost complex curves in S^6 are the equation for primitive maps associated to the 6-symmetric space G2/T^2, and use this to explain some of the known results. Moreover, the equation for S^1-symmetric almost complex curves in S^6 is the periodic Toda lattice, and a discussion of periodic solutions is given.

关 键 词:OCTONIONS Associative cone Almost complex curve Primitive map 

分 类 号:O186.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象