Semiclassical propagator and van Vleck in a mixed position-momentum determinant space  

Semiclassical propagator and van Vleck in a mixed position-momentum determinant space

在线阅读下载全文

作  者:杨光参 

机构地区:[1]School of Physics and Electronic Information, Wenzhou University, Wenzhou 325027, China

出  处:《Chinese Physics B》2006年第5期919-922,共4页中国物理B(英文版)

摘  要:In this paper a semiclassical propagator in a mixed position-momentum space is derived in the formalism of Maslov's multi-dimensional semiclassical theory. The corresponding mixed van Vleck determinant is also given explicitly. The propagator can be used to locally fix semiclassical divergences in singular regions of configuration space. It is shown that when a semicla^sical propagator is transformed from one representation to another, its form is invariant.In this paper a semiclassical propagator in a mixed position-momentum space is derived in the formalism of Maslov's multi-dimensional semiclassical theory. The corresponding mixed van Vleck determinant is also given explicitly. The propagator can be used to locally fix semiclassical divergences in singular regions of configuration space. It is shown that when a semicla^sical propagator is transformed from one representation to another, its form is invariant.

关 键 词:semiclassical theory PROPAGATOR mixed space 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象