基于Jacobian-Free Newton-GMRES(m)方法的电力系统分布式暂态仿真算法  被引量:18

Distributed Dynamic Simulation Algorithm for Power Systems Based on a Jacobian-Free Newton-GMRES (m) Method

在线阅读下载全文

作  者:陈颖[1] 沈沉[1] 梅生伟[1] 卢强[1] 

机构地区:[1]清华大学电机系电力系统国家重点实验室,北京市100084

出  处:《电力系统自动化》2006年第10期12-16,共5页Automation of Electric Power Systems

基  金:国家重点基础研究发展计划(973计划)资助项目(2004CB217903)国家自然科学基金资助项目(50595411)清华大学基础研究基金资助项目(Jc2003021)

摘  要:分布式暂态仿真是实现市场环境下互联电力系统在线一体化仿真分析的有效途径。文中研究了电力系统分布式暂态仿真计算模型,提出了基于Jacobian-Free Newton-GMRES(m)方法的协调求解算法。该算法只需要交换边界母线状态信息,接口简单,实用性强。为了提高算法收敛速度,减少协调求解所需通信次数,提出了自适应预处理和连续修正预处理矩阵、预估边界条件初值及多时步同时协调等改进方法并将其应用于新算法中。测试结果表明,新的暂态仿真分解协调算法收敛快,通信次数少,非常适合在基于广域网络的分布式环境中实现。While power systems are interconnected more closely and deregulated in electricity markets, distributed dynamic simulations among different dispatch centers are highly required for online full system analysis and control. In this paper a new algorithm for distributed dynamic simulation of interconnected power systems is presented. This algorithm is based on a Jacobian-Free Newton-GMRES (m) method, which requires only exchanges of states of boundary buses among different sub- areas. Therefore, it has strong scalability in distributed computing environments built on heterogeneous computing resources, such as the power grid system. Moreover, several accelerating methods are developed to enhance its efficiency, including continuously preconditioning with self-adaptive preconditioners, predicting boundary conditions and multi-step scheduling, Tests on an IEEE standard system are performed. The results show that these accelerating methods can enhance the convergence rate of the proposed algorithm greatly and more feasible and adaptable to high-latency distributed reduce communication costs remarkably, which make the new algorithm computmg environments

关 键 词:分布式计算 暂态仿真 电力网格 Jacobian—Free Newton-GMRES(m) 

分 类 号:TM744[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象