Parametrically Driven Solitons in a Chain of Nonlinear Coupled Pendula with an Impurity  

Parametrically Driven Solitons in a Chain of Nonlinear Coupled Pendula with an Impurity

在线阅读下载全文

作  者:徐海清 唐翌 

机构地区:[1]Institute of Modern Physics, Xiangtan University, Xiangtan 411105

出  处:《Chinese Physics Letters》2006年第6期1544-1547,共4页中国物理快报(英文版)

摘  要:The system consisting of a chain of parametrically driven and damped nonlinear coupled pendula with a mass impurity is studied by means of a discrete version of the envelope function approach. An analogue of the parametrically driven damped nonlinear Schodinger equation with an impurity term is derived from the original lattice equation. Analytical solutions of impurity pinned high-frequency breathers and kinks are obtained. The results show that the mass impurity has striking influence on the high-frequency modes. In addition, we perform numerical simulations, showing that the light mass impurity has a stabilizing effect on the chain. The breathers seeding chaos in the homogeneous chain are pinned on a suitable light impurity to pull the chain from the chaotic state.The system consisting of a chain of parametrically driven and damped nonlinear coupled pendula with a mass impurity is studied by means of a discrete version of the envelope function approach. An analogue of the parametrically driven damped nonlinear Schodinger equation with an impurity term is derived from the original lattice equation. Analytical solutions of impurity pinned high-frequency breathers and kinks are obtained. The results show that the mass impurity has striking influence on the high-frequency modes. In addition, we perform numerical simulations, showing that the light mass impurity has a stabilizing effect on the chain. The breathers seeding chaos in the homogeneous chain are pinned on a suitable light impurity to pull the chain from the chaotic state.

关 键 词:SCHRODINGER-EQUATION DYNAMICS LATTICES MODEL 

分 类 号:O415[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象