一种改进的遗传算法及其在组卷系统中的应用  被引量:4

An Improved Genetic Algorithm and Application to Test Paper Auto-Generation

在线阅读下载全文

作  者:尹红卫[1] 刘云如[1] 易叶青[1] 

机构地区:[1]湖南人文科技学院计算机系,娄底417000

出  处:《现代计算机》2006年第5期66-70,共5页Modern Computer

摘  要:针对遗传算法容易出现早熟和收敛速度慢的问题,根据群体适应值分布的变化特点,提出一种新启发性的基于小生境技术的自适应遗传算法(ANGA)。其基本思想是:根据群体中各个个体的适应值分布情况加以启发,引入一个自适应的常数Cmin,通过自适应调整Cmin以适时改变群体适应值的分布,优化了各个个体被选择的概率,并以目前的计算机等级考试三级信息管理技术的组卷为例,采用ANGA算法进行了仿真计算。仿真结果表明,该算法能够在较短的时间内完成组卷,组卷效率、成功率高,对初值不敏感。To deal with the prematurity and the low convergence speed of genetic algorithm, a new adaptive genetic algorithm based on niches (ANGA) was developed according to the variety of population fitness distribution. The basic idea is as follows: inspired by the variety of population fitness distribution, a self-adaptive constant Cmin. was introduced. By adjusting Cmin according to the population fitness distribution, the selection probability of each population was optimized. The test paper auto-generation of the present "National computer rank examination(3): information management technical" was taken as an example. The tests results indicate that: ANGA can be successfully applied in test paper auto-generation system; The simulation results show that the algorithm can finish a calculation within a short time, and the speed is quite fast, furthermore, the success rate is high, and the sensitivity to initial value is dull.

关 键 词:一遗传算法 组卷 小生境 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象