检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学计算机科学与工程系,上海200433
出 处:《计算机学报》2006年第5期711-718,共8页Chinese Journal of Computers
基 金:国家自然科学基金重大项目基金(90204013);上海市科技发展基金(035115019);教育部全国优秀博士学位论文作者专项基金(200084)等资助
摘 要:给出了关键方程的全新的推广,构造了一个齐次关键模方程,并用域F上的两个变元的多项式环F[x,y]的齐次理想刻画该方程的解空间;证明了齐次关键模方程可以用来解决卷积码的盲识别问题,这是一个全新的研究课题,在智能通信、信息截获和密码分析等领域有重要的应用;利用该方法得到的二元多项式齐次理想Grbner基的快速算法,给出了求解齐次关键模方程的快速算法,也给出了详细的计算实例.大量的实验也证实了该文的各项理论分析结果.This paper proposes a new generalization of the Key Equation. The authors construct a Homogenous Key Module Equation which is described by homogenous ideal of F[x,y], where F is a field. The authors show that the Homogenous Key Module Equation can be used to solve the problem of blind recognition of convolutional codes, which is a novel important research topic in adaptive communication, information interception and cryptanalysis. By means of a fast computation of Groebner basis of homogenous polynomial ideal with two variables, the authors find an efficient algorithm to solve the Homogenous Key Module Equation. A detailed computation example is given in this paper. Extensive experimentation confirms each result of theoretic analysis.
关 键 词:序列综合 关键方程 BERLEKAMP-MASSEY算法 Gr(o)bner基 卷积码盲识别
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.156.36