Characterizations and Extensions of Lipschitz-α Operators  被引量:3

Characterizations and Extensions of Lipschitz-α Operators

在线阅读下载全文

作  者:Huai Xin CAO Jian Hua ZHANG Zong Ben XU 

机构地区:[1]College of Mathematics and Information Science,Shaanxi Normal University [2]Faculty of Science,Xi'an Jiaotong University

出  处:《Acta Mathematica Sinica,English Series》2006年第3期671-678,共8页数学学报(英文版)

基  金:partly supported by NNSF of China(No.19771056,No.69975016,No.10561113)

摘  要:In this work, we prove that a map F from a compact metric space K into a Banach space X over F is a Lipschitz-α operator if and only if for each σ in X^* the map σoF is a Lipschitz-α function on K. In the case that K = [a, b], we show that a map f from [a, b] into X is a Lipschitz-1 operator if and only if it is absolutely continuous and the map σ→ (σ o f)' is a bounded linear operator from X^* into L^∞([a, b]). When K is a compact subset of a finite interval (a, b) and 0 〈 α ≤ 1, we show that every Lipschitz-α operator f from K into X can be extended as a Lipschitz-α operator F from [a, b] into X with Lα(f) ≤ Lα(F) ≤ 3^1-α Lα(f). A similar extension theorem for a little Lipschitz-α operator is also obtained.In this work, we prove that a map F from a compact metric space K into a Banach space X over F is a Lipschitz-α operator if and only if for each σ in X^* the map σoF is a Lipschitz-α function on K. In the case that K = [a, b], we show that a map f from [a, b] into X is a Lipschitz-1 operator if and only if it is absolutely continuous and the map σ→ (σ o f)' is a bounded linear operator from X^* into L^∞([a, b]). When K is a compact subset of a finite interval (a, b) and 0 〈 α ≤ 1, we show that every Lipschitz-α operator f from K into X can be extended as a Lipschitz-α operator F from [a, b] into X with Lα(f) ≤ Lα(F) ≤ 3^1-α Lα(f). A similar extension theorem for a little Lipschitz-α operator is also obtained.

关 键 词:Characterization EXTENSION Lipschitz-α operator 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象