On the Vertex Strong Total Coloring of Halin-Graphs  被引量:2

Halin-图的点强全染色(英文)

在线阅读下载全文

作  者:刘林忠[1] 李引珍[1] 张忠辅[2] 

机构地区:[1]兰州交通大学交通运输学院 [2]兰州交通大学数理学院,甘肃兰州730070

出  处:《Journal of Mathematical Research and Exposition》2006年第2期269-275,共7页数学研究与评论(英文版)

基  金:the National Natural Science Foundation of China (No.19871036) the Qinglan talent Funds of Lanzhou Jiaotong University

摘  要:A proper k-total coloring f of the graph G(V, E) is said to be a k-vertex strong total coloring if and only if for every v ∈ V(G), the elements in N[v] are colored with different colors, where N[v] =. {u|uv E V(G)} ∪{v}. The value xT^vs(G) = min{k| there is a k-vertex strong total coloring of G} is called the vertex strong total chromatic number of G. For a 3-connected plane graph G(V, E), if the graph obtained from G(V, E) by deleting all the edges on the boundary of a face f0 is a tree, then G(V, E) is called a Halin-graph. In this paper, xT^vs,8(G) of the Halin-graph G(V,E) with A(G) 〉 6 and some special graphs are obtained. Furthermore, a conjecture is initialized as follows: Let G(V, E) be a graph with the order of each component are at least 6, then xT^vs(G) ≤ △(G) + 2, where A(G) is the maximum degree of G.图G(V,E)的一个k-正常全染色f叫做一个k-点强全染色当且仅当对任意v∈V(G), N[v]中的元素被染不同色,其中N[v]={u|uv∈V(G)}∪{v}.χTvs(G)=min{k|存在图G的k- 点强全染色}叫做图G的点强全色数.对3-连通平面图G(V,E),如果删去面fo边界上的所有点后的图为一个树图,则G(V,E)叫做一个Halin-图.本文确定了最大度不小于6的Halin- 图和一些特殊图的的点强全色数XTvs(G),并提出了如下猜想:设G(V,E)为每一连通分支的阶不小于6的图,则χTvs(G)≤△(G)+2,其中△(G)为图G(V,E)的最大度.

关 键 词:Italin-graph coloring problem vertex strong total coloring total coloring problem. 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象