自然类比法在地震序列分类及震后趋势早期判别中的应用  被引量:13

APPLICATION OF NATURAL ANALOGISM TO DISTINGUISH TYPES OF EARTHQUAKE SEQUENCES AND TO DETERMINE POST-SEISMIC TENDENCY IN EARLY STAGE

在线阅读下载全文

作  者:焦远碧[1] 刘杰[1] 

机构地区:[1]国家地震局分析预报中心,中国北京100036

出  处:《地震》1996年第1期22-32,共11页Earthquake

基  金:国家地震局"八五"攻关项目(85-04-03-01)

摘  要:从震后趋势判断的实际需要出发,提出了一种地震序列类型划分的新方法,即根据强余震次数将序列划分为无强余震型、强余震较少型、强余震较多型和强余震极多型四种类型。 为了实现早期判别的目标,采用地震后3天的资料用自然类比法对地震序列类型和震后趋势作判断。将新发生的序列前3天应变能释放分布情况和频度分布情况与以前发生的序列逐一加以比较,用柯尔莫哥洛夫(Kolmogorov)-斯米尔诺夫(Smirnov)检验找出与之最相似的一、二个序列,用已知序列的类型和强余震次数判断新序列的类型和预测新序列强余震次数。 用此方法对本活跃期发生的乌恰、澜沧—耿马、共和3次7级地震和巴塘、小金、大同、景泰、柯坪、普洱6次6级地震进行了内符检验,取得了较好的效果。Authors present a new method to distinguish the types of earthquake sequences because there is a need for determination of post-seismic tendency. By using this method, the earthquake sequences are distingushed according to number of strong aftershocks. There are four types: no strong aftershock; less strong aftershock; more strong aftershocks and the most strong aftershocks. In order to determine the types and post-seismic tendency of earthquake sequences in early stage, authors operated natural analogism using three days after main shock. The distribution of strain energy release and frequency within the initial three days after a newly occurred earthquake sequence is compared with that of many known earthquake sequences one by one, and the most similar one or two known earthquake sequences are determined with Kolmogorov-Smirnov test. The type and strong shock number of the new earthquake sequence is predicted by that known earthquake sequence. The method is internally tested by three earthquakes with M≥ 7 in Wuqia, Lancang-Gengma, Gonghe and six earthquakes with 6≤ M< 1 in Batang, Xiaojin, Datong, Jingtai, Keping, Pu'er during this seismically active episode. The result of test is better.

关 键 词:地震序列 序列类型 震后趋势 自然类比法 

分 类 号:P315.2[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象