机车周转图编制的自适应遗传算法  被引量:5

Self-Adaptive Genetic Algorithm for Locomotive Diagram

在线阅读下载全文

作  者:何奉道[1] 梁向阳[2] 何冬昀[3] 

机构地区:[1]西南交通大学信息科学与技术学院,四川成都610031 [2]中铁一局集团有限公司经营开发中心,陕西西安710054 [3]四川大学工商管理学院,四川成都610064

出  处:《西南交通大学学报》2006年第3期273-278,共6页Journal of Southwest Jiaotong University

摘  要:建立了成对与不成对列车运行图的机车周转图的数学模型和相应的机车最优配置的遗传算法.用单段映射交叉和基于知识的变异方法以及交叉概率,变异概率随个体优劣程度自适应调整策略,提高了局部搜索能力以及收敛和优化性能.以某区段实际运行图为例,用本文方法使机车总消耗时间和需要的机车数分别减少约5.7%和7.7%;用文献中的实例数据计算,与原方法相比,减少了机车总消耗时间.A mathematical model for a locomotive diagram of a train diagram with paired and nonpaired trains was presented, and the optimized schedule was obtained with a genetic algorithm. The abilities of local search, convergence and optimization were raised with a two-point crossover operator and a knowledge-based mutation operator. The proposed method was tested over an actual problem of train diagram for a district on a railway line. The results show that the total time of locomotive operation and the required number of locomotives are reduced by about 5.7% and 7.7% , respectively. Another result shows that the proposed method reduces total time of locomotive operation compared with the method presented and for the same data taken in the same paper.

关 键 词:机车周转图 遗传算法 自适应 优化 铁路 

分 类 号:U29[交通运输工程—交通运输规划与管理] TP39[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象