COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY  被引量:1

粘性依赖于密度的可压缩Navier-Stokes方程(英文)

在线阅读下载全文

作  者:张挺 

机构地区:[1]Dept. of Math., Zhejiang Univ., Hangzhou 310027,China

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2006年第2期165-178,共14页高校应用数学学报(英文版)(B辑)

基  金:SupportedbytheNationalNaturalScienceFoundationofChina(10271108).

摘  要:The global existence of solutions to the equations of one-dimensional compressible flow with density-dependent viscosity is proved. Specifically,the assumptions on initial data are that the modulo constant is stated at x=∞ +and x=-∞ ,which may be different ,the density and velocity are in L^z ,and the density is bounded above and below away from zero. The results also show that even under these conditions, neither vacuum states nor concentration states can be formed in finite time.The global existence of solutions to the equations of one-dimensional compressible flow with density-dependent viscosity is proved. Specifically,the assumptions on initial data are that the modulo constant is stated at x=∞ +and x=-∞ ,which may be different ,the density and velocity are in L^z ,and the density is bounded above and below away from zero. The results also show that even under these conditions, neither vacuum states nor concentration states can be formed in finite time.

关 键 词:Navier-Stokes equation density-dependent viscosity global existence. 

分 类 号:O175.24[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象