检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张挺
机构地区:[1]Dept. of Math., Zhejiang Univ., Hangzhou 310027,China
出 处:《Applied Mathematics(A Journal of Chinese Universities)》2006年第2期165-178,共14页高校应用数学学报(英文版)(B辑)
基 金:SupportedbytheNationalNaturalScienceFoundationofChina(10271108).
摘 要:The global existence of solutions to the equations of one-dimensional compressible flow with density-dependent viscosity is proved. Specifically,the assumptions on initial data are that the modulo constant is stated at x=∞ +and x=-∞ ,which may be different ,the density and velocity are in L^z ,and the density is bounded above and below away from zero. The results also show that even under these conditions, neither vacuum states nor concentration states can be formed in finite time.The global existence of solutions to the equations of one-dimensional compressible flow with density-dependent viscosity is proved. Specifically,the assumptions on initial data are that the modulo constant is stated at x=∞ +and x=-∞ ,which may be different ,the density and velocity are in L^z ,and the density is bounded above and below away from zero. The results also show that even under these conditions, neither vacuum states nor concentration states can be formed in finite time.
关 键 词:Navier-Stokes equation density-dependent viscosity global existence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.125.156