检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南大学电子信息工程学院,重庆400715 [2]西南大学计算机与信息科学学院,重庆400715
出 处:《计算机科学》2006年第6期186-187,191,共3页Computer Science
基 金:重庆市应用基金研究项目(No.2001-6968);校科技基金资助项目(No.SWNUF2004006)。
摘 要:本文介绍了一种模糊加权中值滤波器,该滤波器由模糊布尔函数和滤波加权确定。本文用S型函数逼近模糊布尔函数。此外,用模糊理论领域中使用的S型函数逼近所滤波的加权。模糊加权中值滤波器只由4个参数确定。所提出的滤波在均方误差准则下能够由最小均方算法导出。图像复原的实验结果表明,本文介绍的模糊加权中值滤波方法既能去除脉冲噪声和平滑高斯噪声,又能同时有效地保持边缘和图像细节,模糊加权中值滤波器明显优于加权中值滤波器,也优于Wiener滤波器。In this paper a fuzzy weighted median( FWM) filter is proposed. The FWM filter is defined by the Boolean function and filter weights. We approximate the fuzzy Boolean function by the S-type function. Furthermore, we approximate weights of the filter by the S-type function which is used in the field of the fuzzy theory. The FWM filter is defined by only four parameters. The proposed filter can be derived by least mean square(LMS)algorithm under the mean square error criterion. The experimental results in image restoration show that the proposed FWM filters are able to remove the impulse noise and smooth Gaussian noise as well as efficiently preserve edges and image details. Our conclusion is that the FWM filters have obvious superiorities over not WM filters but also Wiener filter.
关 键 词:模糊加权中值滤波器 模糊布尔函数 S型函数 最小均方算法
分 类 号:TN713[电子电信—电路与系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3