检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WEN Jia-jin KE Rui LUE Tao
机构地区:[1]Department of Mathematics and Computer Science, Chengdu University, Chengdu 610106 China [2]Department of Mathematics, Guangzhou Maritime College, Guangzhou 510725, China [3]College of Mathematics, Sichuan University, Chengdu 610024, China
出 处:《Chinese Quarterly Journal of Mathematics》2006年第2期210-219,共10页数学季刊(英文版)
基 金:Supported by the NSF of China(10171073)
摘 要:Let P be an inner point of a convex N-gon ΓN : A1A2… ANA1(N ≥ 3), and let di,k denote the distance from the point Ai+k to the line PAi(i = 1,2,…,N, Ai = Aj〈=〉 i ≡ j(modN)), which is called the k-Brocard distance for P of ΓN. We have proved the following double-inequality: If P ∈ ΓN, k = N↑∩i=1∠Ai-kAiAi+k(1 ≤ k 〈 N/2,i =1,2,…,N), and r ≤ lnN-ln(N-1)/ln2+2[lnN-ln(N-1)], then (1/N N↑∑↑i=1di^r, k)^1/r≤1/N coskπ/N N↑∑↑i=1|AiAi+k|≤sin2kπ/2sinπ/N(1/N N↑∑↑i=1|AiAi+1|^2.
关 键 词:convex N-gon k-Brocard distance Hoelder inequality Janous-Klamkin's conjecture
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.89