A Class of the Geometric Inequalities Involving k-Brocard Distance  被引量:5

A Class of the Geometric Inequalities Involving k-Brocard Distance

在线阅读下载全文

作  者:WEN Jia-jin KE Rui LUE Tao 

机构地区:[1]Department of Mathematics and Computer Science, Chengdu University, Chengdu 610106 China [2]Department of Mathematics, Guangzhou Maritime College, Guangzhou 510725, China [3]College of Mathematics, Sichuan University, Chengdu 610024, China

出  处:《Chinese Quarterly Journal of Mathematics》2006年第2期210-219,共10页数学季刊(英文版)

基  金:Supported by the NSF of China(10171073)

摘  要:Let P be an inner point of a convex N-gon ΓN : A1A2… ANA1(N ≥ 3), and let di,k denote the distance from the point Ai+k to the line PAi(i = 1,2,…,N, Ai = Aj〈=〉 i ≡ j(modN)), which is called the k-Brocard distance for P of ΓN. We have proved the following double-inequality: If P ∈ ΓN, k = N↑∩i=1∠Ai-kAiAi+k(1 ≤ k 〈 N/2,i =1,2,…,N), and r ≤ lnN-ln(N-1)/ln2+2[lnN-ln(N-1)], then (1/N N↑∑↑i=1di^r, k)^1/r≤1/N coskπ/N N↑∑↑i=1|AiAi+k|≤sin2kπ/2sinπ/N(1/N N↑∑↑i=1|AiAi+1|^2.

关 键 词:convex N-gon k-Brocard distance Hoelder inequality Janous-Klamkin's conjecture 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象