Probabilistic density function estimation of geotechnical shear strength parameters using the second Chebyshev orthogonal polynomial  被引量:1

Probabilistic density function estimation of geotechnical shear strength parameters using the second Chebyshev orthogonal polynomial

在线阅读下载全文

作  者:李夕兵 宫凤强 邓建 

机构地区:[1]School of Resources and Safety Engineering,Central South University, Changsha 410083,China

出  处:《Journal of Central South University of Technology》2006年第3期275-280,共6页中南工业大学学报(英文版)

基  金:Projects(50490274 , 10472134 , 50404010) supported by the National Natural Science Foundation of China ; project(2002CB412703) supported by the Key Fundamental Research and Development Programof China

摘  要:A method to estimate the probabilistic density function (PDF) of shear strength parameters was proposed. The second Chebyshev orthogonal polynomial(SCOP) combined with sample moments (the origin moments) was used to approximate the PDF of parameters. X^2 test was adopted to verify the availability of the method. It is distribution-free because no classical theoretical distributions were assumed in advance and the inference result provides a universal form of probability density curves. Six most commonly-used theoretical distributions named normal, lognormal, extreme value Ⅰ , gama, beta and Weibull distributions were used to verify SCOP method. An example from the observed data of cohesion c of a kind of silt clay was presented for illustrative purpose. The results show that the acceptance levels in SCOP are all smaller than those in the classical finite comparative method and the SCOP function is more accurate and effective in the reliability analysis of geotechnical engineering.估计概率的密度函数(PDF ) 的一个方法砍力量参数被建议。与样品时刻(起源时刻) 相结合的第二个 Chebyshev 直角的多项式(SCOP ) 被用来接近参数的 PDF。2 测试的χ ~ 被采用验证方法的可获得性。因为没有古典理论分布预先被假定,推理结果提供概率密度曲线的一种通用形式,它是没有分发的。六很使用得通常的理论分布说出正常,记载正常、极端价值Ⅰ,鲸鱼群一,贝它和 Weibull 分布被用来验证 SCOP 方法。从一种淤泥泥土的结合 c 的观察数据的一个例子为解说性的目的被举。在 SCOP 的接受层次都是比在古典有限比较方法和 SCOP 功能的那些小的结果表演在 geotechnical 工程的可靠性分析更精确、有效。

关 键 词:shear strength second Chebyshev orthogonal polynomial probabilistic density function origin moments 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象