检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽农业大学动物科学系,安徽合肥230036 [2]中国农业大学动物科学系,北京100094
出 处:《中国畜牧杂志》2006年第11期1-4,共4页Chinese Journal of Animal Science
基 金:国家重点基础研究发展规划(批准号:G2000016103);安徽省自然科学基金(050410204);安徽省教育厅项目(批准号:2002jq126;2004kj151)
摘 要:将广义线性混合模型(GLMM)引入动物离散性状的遗传分析及个体的遗传评定,初步比较了GLMM方法与一般线性方法(LM)的估计效果。模拟研究的性状为单阈值二项分类性状,选用的连接函数为对数连接μi=eη/(1+eη),方差函数为V(μi)=μ(i1-μi)/n,试验设计为全同胞-半同胞混合家系,参数估计采用Fisher迹法。结果表明:GLMM方法能较准确地估计公畜的个体育种值,在个体的遗传评定效果方面要明显优于常规的线性方法,其预测的育种值排序结果与真实育种值的排序之间存在极显著的相关性(P<0.001)。A method of generalized linear mixed model (GLMM) was introduced for genetic analysis and breeding value prediction for discrete traits. The logit linkage function (μi = e^η/(1 + e^η) was applied. The method of Fisher Scoring was used to solve the non-linear equations. To exam the efficiency of the proposed method and to compare the conventional linear model (LM) method, a simulation study was conducted, in which a binary trait and a population with multiple full and half sib families were simulated. The results showed that the GLMM method had a great advantage in predicting breeding values for discrete traits. The Sperman correlation between the predicted and the true breeding values was 0.926 for GLMM method, which is much higher than that from LM method (0.665).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229