HOT EMBOSSING METHODS FOR PLASTIC MICROCHANNEL FABRICATION  被引量:1

HOT EMBOSSING METHODS FOR PLASTIC MICROCHANNEL FABRICATION

在线阅读下载全文

作  者:LIU Junshan WANG Liding LIU Chong LU0 Yi 

机构地区:[1]Key Laboratory for Micro/Nano Technology and System of Liaoning Province,Dalian University of Technology,Dalian 116023, China

出  处:《Chinese Journal of Mechanical Engineering》2006年第2期223-225,共3页中国机械工程学报(英文版)

基  金:This project is supported by National Natural Science Foundation of China (No.50135040)National Hi-tech Research and Development Program of China(863 Program, No.2002AA404460).

摘  要:Fabrication of microchannels on polymethylmethacrylate (PMMA) substrates using novel microfabrication methods is demonstrated. The image of microchannels is transferred from a silicon master possessing the inverse image of the microchannel to a PMMA plate by using hot embossing methods. The silicon master is electrostatically bonded to a Pyrex 7740 glass wafer, which improves the device yield from about 20 devices to hundreds of devices per master. Effects of embossing temperature, pressure and time on the accuracy of replication are systematically studied using the orthogonal factorial design. According to the suggested experimental model, the time for the whole embossing procedure is shorten from about 20 min to 6 min, and the accuracy of replication is 99.3%. The reproducibility of the hot embossing method is evaluated using 10 channels on different microfluidic devices, with variations of 1.4 % in depth and 1.8% in width.Fabrication of microchannels on polymethylmethacrylate (PMMA) substrates using novel microfabrication methods is demonstrated. The image of microchannels is transferred from a silicon master possessing the inverse image of the microchannel to a PMMA plate by using hot embossing methods. The silicon master is electrostatically bonded to a Pyrex 7740 glass wafer, which improves the device yield from about 20 devices to hundreds of devices per master. Effects of embossing temperature, pressure and time on the accuracy of replication are systematically studied using the orthogonal factorial design. According to the suggested experimental model, the time for the whole embossing procedure is shorten from about 20 min to 6 min, and the accuracy of replication is 99.3%. The reproducibility of the hot embossing method is evaluated using 10 channels on different microfluidic devices, with variations of 1.4 % in depth and 1.8% in width.

关 键 词:MICROCHANNEL MICROFLUIDICS Hot embossing PLASTIC Polymethylmethacrylate (PMMA) 

分 类 号:TQ320.66[化学工程—合成树脂塑料工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象