检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力自动化设备》2006年第7期18-21,25,共5页Electric Power Automation Equipment
摘 要:在电力市场环境下发电商的机组报价将会随着机组出力的变化而变化,此时发电计划偏差优化问题的目标函数不再是简单的线性模型,而是非线性模型。针对该优化问题的特点,提出了β分布-粒子群优化算法(β-PSO),用β分布函数代替传统PSO算法中的均匀分布函数。在产生可行解的过程和迭代过程中动态地调整β随机函数的参数,以提高产生可行解的速度和质量,在粒子速度更新时保证粒子在可行域内不断寻优。通过算例表明,该算法有效地解决了以往粒子群算法在求解优化问题时难以找到可行解的困难。In electricity market,as the power producers' bidding prices change with power outputs of units,the objective function of generation scheduling error optimization is no longer a linear model,for which,β-PSO (β distribution-Particle Swarm Optimization) method is proposed, using β distribution random function instead of even distribution random function. Parameters of β- PSO are adjusted dynamically in working out solution and iteration process to improve the speed and quality of the feasible solution,and to ensure particles to search best solutions in the feasible region during particle speed updating. An example shows that,the method effectively releases the difficulty of former PSO algorithm in finding the feasible solution of optimization problem.
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30