检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机测量与控制》2006年第6期742-744,764,共4页Computer Measurement &Control
基 金:国家自然科学基金(50375047);湖北省教育厅重点项目(2003A002);湖北省自然科学基金(2004ABA064)
摘 要:无监督学习的竞争式神经网络是一种数据聚类方法,能保持输入空间的拓扑关系不变,借助于一维或二维输出平面的一组有序的向量,实现高维数据的聚类和可视化;探讨了一种无监督神经网络———SOFM网络原理、思想和算法步骤,研究了无监督网络在模式识别中的应用,提出了基于SOFM网络的故障模式识别和状态监测方法;通过实例研究了SOFM网络在机械设备故障模式识别和状态监测中的应用。The unsupervised learning network is a data cluster method, it can transform an incoming signal pattern of arbitrary dimension into a one-or two-dimensional discrete map, and perform this transformation adaptively in a topologically ordered fashion. The prin- ciple and algorithm of a unsupervised neural network--SOFM is be discussed, the unsupervised network is applied to pattern recognition of the bearing fault, the new pattern recognition technique has been introduced, the high--dimensional input vectors are projected into a two-dimensional space. Numeric experimentation results show reasonable agreements to that the proposed method could recognize the fault pattern clearly and distinctly than common visualization method.
分 类 号:TM263[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46