检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学水沙科学与水利水电工程重点实验室,北京100084 [2]河南省交通规划勘察设计院,郑州450052
出 处:《岩土力学》2006年第7期1028-1032,共5页Rock and Soil Mechanics
摘 要:提出的单元集成法为采用塑性力学上限定理分析边坡的稳定性提供了一种通用性较强的手段。它采用类似于有限元网格划分的方式离散边坡计算区域,并设定一个机动许可的滑动机构(包括滑裂面位置和速度场,它与网格划分方式无关),在此滑动机构下可以很方便地计算每个单元贡献的外力功率和内能耗散率。把所有单元的能量相加就是滑坡体的总能量。然后,根据上限定理求得安全系数,并通过非线性数学规划方法找到最小值。对于直线滑裂面或对数螺旋滑裂面的单滑块机制,几个典型算例说明了该方法的有效性。Element integration method provides a general approach for slope stability analysis based on the upper bound limit theorem in plasticity. Small triangle elements are used to discretize the slope media. A kinematically admissiable velocity field is supposed independed with the element meshing. Work done by the body forces, surface loads, as well as internal energy dissipations within an element are convenient to obtain under such a failure mechanism. The whole energy can be calculated from the energy integration among all the elements. The safety factor can therefore be solved from the upper bound limit theorem, and its minimum value can be obtained from optimization method. For single block mechanism, such as plane slip surface, or log-spiral slip surface, the validity of this method has been verified from three typical examples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38