检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电气工程系,上海市徐汇区200030
出 处:《电网技术》2006年第13期44-48,65,共6页Power System Technology
摘 要:提出了一种求解机组组合问题的嵌入贪婪搜索机制的改进粒子群优化算法。其特点包括:采用固定阈值处理表示机组运行状态的0、1整型变量,从而可直接应用粒子群算法求解机组组合问题,避免求解各时段中的经济负荷分配子问题;在粒子群算法迭代过程中应用变异操作更新进化速度缓慢的粒子,增强了算法的搜索能力;算法收敛后,采用基于优先列表的贪婪搜索机制做进一步寻优,既加快了算法收敛速度,又提高了解的质量。算例结果表明所提出的方法在求解机组组合问题时具有很强的搜索能力和适应性。To solve unit commitment (UC) an improved particle swarm optimization algorithm is proposed, in which greedy search is embedded. The features of the proposed method are as following: the integer variables representing units' operation states are processed by fixed threshold, thus UC can be directly solved by algorithm and the sub-problems particle swarm optimization of economic dispatch in each time interval can be avoided; in the iteration of particle swarm optimization the slow evolution particles are renewed by mutation operation, so the search capability of the algorithm is enhanced; after the algorithm is converged, through the further search by use of greedy search based on priority list (PL), the convergence is accelerated as well as the quality of the solution is improved. The proposed algorithm is tested and verified by two UC cases, the calculation results show that the proposed method possesses efficient search capability and adaptability.
关 键 词:粒子群优化算法 优先列表 贪婪搜索 变异操作 机组组合 经济负荷分配
分 类 号:TM744[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.56