Preparation and characterization of highly active nanosized strontium-doped lanthanum cobaltate catalysts with high surface areas  被引量:2

Preparation and characterization of highly active nanosizedstrontium-doped lanthanum cobaltate catalysts with high surface areas

在线阅读下载全文

作  者:NIU Jianrong LIU Wei DAI Hongxing HE Hong Zl Xuehong LI Peiheng 

机构地区:[1]Laboratory of Catalysis Chemistry and Nanoscience, Department ofChemistry and Chemical Engineering, College of Environmental andEnergy Engineering, Beijing University of Technology, Beijing 100022,China

出  处:《Chinese Science Bulletin》2006年第14期1673-1681,共9页

基  金:This work was supported by the Key Project of Science and Technology Development Plan of the Education Committee of Beijing and the Key Project (Class B) of Natural Science Foundation of Beijing (Grant No. KZ200610005004).

摘  要:La1?xSrxCoO3?δ (x=0, 0.4) nanoparticles have been prepared using the citric acid complex-ing-hydrothermal synthesis coupled method and citric acid complexing method. The physico-chemical properties of these materials were characterized by means of X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), element analysis (EDX), X-ray photoelectron spectroscopic (XPS), oxygen temperature-programmed desorption (O2-TPD), hydrogen temperature-programmed re-duction (H2-TPR) as well as surface area measure-ments and oxidation state titration. Their catalytic performance was examined for the total oxidation of ethylacetate (EA). It is found that the La1?xSrxCoO3?δ (x=0, 0.4) catalysts were single-phase and rhombo-hedrally-structured perovskites and their surface ar-eas ranged from 16 to 26 m2/g. The Sr-doped sample derived from the coupled procedure was uniformly distributed nanoparticles with a short rod-shaped morphology. The doping of Sr (i) enhanced the con-centrations of Co3+ and oxygen vacancies, (ii) in-creased the amount of oxygen adsorbed on the sur-face at low temperatures, (iii) promoted the mobility of lattice oxygen, and (iv) improved the properties of redox. The La0.6Sr0.4CoO2.78 catalyst prepared by the citric acid complexing-hydrothermal synthesis cou-pled strategy performed the best in the oxidation of EA, furthermore no partially oxidized products were formed. Based on the above results, we conclude that in addition to the surface area, the catalytic ac-tivity of the perovskite-type oxide nanoparticles was associated with the structural defect (oxygen vacancy) concentration and redox ability.La1-xSrxCoO33-δ (x=0, 0.4) nanoparticles have been prepared using the citric acid complexing-hydrothermal synthesis coupled method and citric acid complexing method. The physico-chemical properties of these materials were characterized by means of X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), element analysis (EDX), X-ray photoelectron spectroscopic (XPS), oxygen temperature-programmed desorption (O2-TPD), hydrogen temperature-programmed reduction (H2-TPR) as well as surface area measurements and oxidation state titration. Their catalytic performance was examined for the total oxidation of ethylacetate (EA). It is found that the La1-xSrxCoO3-δ (x=0. 0.4) catalysts were single-phase and rhombohedrally-structured perovskites and their surface areas ranged from 16 to 26 m^2/g. The Sr-doped sample derived from the coupled procedure was uniformly distributed nanoparticles with a short rod-shaped morphology. The doping of Sr (i) enhanced the concentrations of Co^3+ and oxygen vacancies, (ii) increased the amount of oxygen adsorbed on the surface at low temperatures, (iii) promoted the mobility of lattice oxygen, and (iv) improved the properties of redox. The La0.6Sr0.4CoO2.78 catalyst prepared by the citric acid complexing-hydrothermal synthesis coupled strategy performed the best in the oxidation of EA, furthermore no partially oxidized products were formed. Based on the above results, we conclude that in addition to the surface area, the catalytic activity of the perovskite-type oxide nanoparticles was associated with the structural defect (oxygen vacancy) concentration and redox ability.

关 键 词:柠檬酸 配位物 热分析  稀土 钙钛矿 催化剂 挥发性有机物 

分 类 号:O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象