Continuous Wave Performance and Tunability of MBE Grown 2.1μm InGaAsSb/AlGaAsSb MQW lasers  被引量:13

Continuous Wave Performance and Tunability of MBE Grown 2.1μm InGaAsSb/AlGaAsSb MQW lasers

在线阅读下载全文

作  者:张永刚 郑燕兰 林春 李爱珍 刘盛 

机构地区:[1]State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050

出  处:《Chinese Physics Letters》2006年第8期2262-2265,共4页中国物理快报(英文版)

基  金:Supported by the National High Technology Research and Development Programme of China under Grant No 2002AA313040 and the National Natural Science Foundation of China under Grant No 60136010.

摘  要:InCaAsSb/AlGaAsSb multi quantum well ridge waveguide lasers at 2.1 μm wavelength are fabricated by using molecular beam epitaxy. Continuous wave performance and tunability of the lasers are evaluated in a wide temperature range extend to 80℃. Output power of the laser at 30℃ exceeds 30 m W/facet at driving current of 0.5 A, the characteristic temperature To is 89K in 0-50℃ range. No fast degradation is observed in accelerated aging test at 90℃ for those lasers with lower Al content in cladding layers. Temperature tunability of the lasers is 1.36 nm/K. Single-mode output with side mode suppression ratios greater than 20 dB is achieved in a certain driving current region; current tunability is 8 × 10^-3 nm/mA regardless of mode hopping.InCaAsSb/AlGaAsSb multi quantum well ridge waveguide lasers at 2.1 μm wavelength are fabricated by using molecular beam epitaxy. Continuous wave performance and tunability of the lasers are evaluated in a wide temperature range extend to 80℃. Output power of the laser at 30℃ exceeds 30 m W/facet at driving current of 0.5 A, the characteristic temperature To is 89K in 0-50℃ range. No fast degradation is observed in accelerated aging test at 90℃ for those lasers with lower Al content in cladding layers. Temperature tunability of the lasers is 1.36 nm/K. Single-mode output with side mode suppression ratios greater than 20 dB is achieved in a certain driving current region; current tunability is 8 × 10^-3 nm/mA regardless of mode hopping.

分 类 号:TN24[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象