检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:H.Mazaheri
出 处:《Analysis in Theory and Applications》2006年第2期141-145,共5页分析理论与应用(英文刊)
摘 要:The concepts of quasi-Chebyshev and weakly-Chebyshev and σ-Chebyshev were defined [3 - 7], andas a counterpart to best approximation in normed linear spaces, best coapprozimation was introduced by Franchetti and Furi^[1]. In this research, we shall define τ-Chebyshev subspaces and τ-cochebyshev subspaces of a Banach space, in which the property τ is compact or weakly-compact, respectively. A set of necessary and sufficient theorems under which a subspace is τ-Chebyshev is defined.The concepts of quasi-Chebyshev and weakly-Chebyshev and σ-Chebyshev were defined [3 - 7], andas a counterpart to best approximation in normed linear spaces, best coapprozimation was introduced by Franchetti and Furi^[1]. In this research, we shall define τ-Chebyshev subspaces and τ-cochebyshev subspaces of a Banach space, in which the property τ is compact or weakly-compact, respectively. A set of necessary and sufficient theorems under which a subspace is τ-Chebyshev is defined.
关 键 词:best approximation best coapproximation τ-Chebyshev subspace τ-cochebyshev subspace compact set weakly compact set
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28