检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Suguru Arimoto Morio Yoshida Ji-Hun Bae
机构地区:[1]Department of Robotics Ritsumeikan University,Kusatsu,Shiga,525-8577,Japan
出 处:《International Journal of Automation and computing》2006年第3期263-270,共8页国际自动化与计算杂志(英文版)
基 金:This work was supported in part by the Grant-in-Aid for Exploratory Research of the JSPS (No. 16656085).
摘 要:A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.A mathematical model expressing the motion of a pair of multi-DOF robot fingers with hemi-spherical ends, grasping a 3-D rigid object with parallel fiat surfaces, is derived, together with non-holonomic constraints. By referring to the fact that humans grasp an object in the form of precision prehension, dynamically and stably by opposable forces, between the thumb and another finger (index or middle finger), a simple control signal constructed from finger-thumb opposition is proposed, and shown to realize stable grasping in a dynamic sense without using object information or external sensing (this is called "blind grasp" in this paper). The stability of grasping with force/torque balance under non-holonomic constraints is analyzed on the basis of a new concept named "stability on a manifold". Preliminary simulation results are shown to verify the validity of the theoretical results.
关 键 词:Dynamics of 3-D grasping blind-grasping non-holonomic constraints stable grasping precision prehension
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222