检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数理统计与管理》2006年第4期462-468,共7页Journal of Applied Statistics and Management
基 金:广东省科技计划攻关项目(编号:2004B10101010)
摘 要:主成分分析方法是在经济管理中经常使用的多元统计分析方法,在变量降维方面扮演着很重要的角色,是进行多变量综合评价的有力工具。但传统的主成分分析对于异常值十分敏感,计算结果很容易受到异常值影响,而实际数据常包含异常情况,通常分析很少考虑它们的作用。本文基于MCD估计提出一种稳健的主成分分析方法,模拟和实证分析结果表明,该方法对于抵抗异常值有很好的效果。Principal component analysis(PCA)is a frequently used muhivariable analysis method in economics and management, it plays an important role in dimension reduction and is a powerful tool for overall evaluation. But traditional PCA is very sensitive to outliers and the results are easily affected by them. Real-life data always include abnormal situations which is usually lack of consideration. A robust PCA based on MCD estmator is put forward in this paper. Simulations and empirical study prove that it is very effective in resistance of outliers.
分 类 号:O212[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117