检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈洪高[1] 吴江生[1] 程雨贵[1] 刘超[1]
机构地区:[1]华中农业大学作物遗传改良国家重点实验室,湖北武汉430070
出 处:《作物学报》2006年第8期1117-1120,T0002,共5页Acta Agronomica Sinica
基 金:国家高技术研究发展计划(863计划)(2001AA241101)
摘 要:通过萝卜(Raphanus sativus L.,2n=18,RR)与白花芥蓝(Brassica alboglabra Bailey,2n=18,CC)杂交,F1经秋水仙碱加倍合成萝卜-芥蓝异源四倍体(Raphanobrassica,2n=36,RRCC)。经F4-F10代连续育性选择,F10单株种子产量达32.3g,每角粒数达14.9。基因组原位杂交显示F10减数分裂行为类似于二倍体物种,表明该异源四倍体的细胞学行为已经稳定。育性观察表明,可育花粉足够各代生产种子,但低世代杂种出现高频瘪粒种子,胚珠败孕可能是其主要原因。该萝卜-芥蓝异源四倍体可以用作向油菜(B.napus L.,2n=38,AACC)转移萝卜基因的遗传桥梁。Artificial intergeneric amphidiploids Rapahnobrassica (2n = 36, RRCC) between Raphanus sativus L. (2n = 18, RR)and Brassica oleracea L. (2n = 18, CC) have been studied for more than eighty years as potential new fodder crop or bridge crop, for their disease resistance, cytoplasm male sterility and vegetative vigor. However, their use as one new crop was mainly limited for the low seed productivity. Amphidiploids synthesized from different crossing combinations showed different levels of seed fertility, which could be improved to some extent by repeated selections. To exploit the useful R. sativus genes for Brassica breeding, one new amphidiploid Raphanobrassica was produced by doubling the chromosome number of the F1 hybrids of R. sativus cv. Heqing × B. alboglabra Bailey with colchicine treatment. As previous reports, the developments of siliqua and seeds were very difficult in the early generations of the present amphidiploid (Plate Ⅰ-A, B), most siliquas stopped growth and became shriveled after about 30 days of fertilization, and no seeds were visible in pods. A small part of short and thick siliquas formed and contained one or several seeds per pod, but most of seeds were small, shriveled and morphologically un-regular and only a minority was of full size. Selections were made from F4 to F10 with special attention for the improvement of seed fertility, and consequently siliqua number per plant and seed maturation level increased generation by generation, on the other hand the frequency of small and shriveled seeds decreased. F10 plants showed good seed fertility (Plate Ⅰ -E, F, G), for the mean seed yield reached 32.3 g per plant, the number of siliqua per plant was about 700, the number of seed per siliqa was 14.9 (Table 1), approximately 80% of the seeds were fully developed (Plate Ⅰ -F). Genomic in situ hybridization (GISH) investigations on the meiosis of F10 pollen mother cells (PMCs) showed that these plants had the expected chromosome complements of the 18 ch
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.10.46