检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴宏刚[1] 李晓峰[1] 陈跃斌[1] 李在铭[1]
机构地区:[1]电子科技大学通信与信息工程学院,四川成都610054
出 处:《红外与毫米波学报》2006年第4期301-305,共5页Journal of Infrared and Millimeter Waves
基 金:国家863高技术计划(2004AA823120);国家自然科学基金(10376005)资助项目
摘 要:提出了一种新的方法应用于一类重要的高维信号检测问题:在强杂波干扰下检测数字图像序列中位置和速度未知的弱小运动目标.通过对输入序列时域灰度矩进行学习,将像素分成两类———静杂波和动杂波.分别对其采用非参数时域滤波和LS自适应滤波进行去除,从而将原始数据转化为准SPGWN模型.杂波抑制后,根据单帧多像素目标模型假设,采用在空、时域联合集成信号能量的检测算法,能有效地改善信噪比并且有利于实时实现.理论分析和对真实数据的大量仿真试验验证了本方法的有效性.A new method was proposed for the solution of an important class of multidimensional signal detection problems : the detection of dim, small and moving targets of unknown position and velocity in heavy clutter in a sequence of digital images. By studying temporal gray-level moment of input sequence, the pixels were classified into two categories: stationary clutter and variational clutter. And a nonparametric temporal filter and a LS adaptive filter were applied for suppressing clutter respectively, thus the raw images were transformed into quasi SPGWN model. Then according to a target modei of muhi-pixel per frame, a detection algorithm integrating signal energy in spatial and temporal domain jointly was employed. The algorithm can improve SNR evidently and can easily be implemented in real time. The theoretic analysis and many simulations of real data verify the validity of the method.
关 键 词:空时杂波抑制 空时联合检测 弱小运动目标 自适应 LS滤波
分 类 号:V243[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3