基于数据挖掘技术的全局优化算法  

The Global Algorithms Based on Data Mining

在线阅读下载全文

作  者:张慧平[1] 戴波[1] 

机构地区:[1]北京石油化工学院自动化系,北京102617

出  处:《江南大学学报(自然科学版)》2006年第4期485-488,共4页Joural of Jiangnan University (Natural Science Edition) 

摘  要:在过程系统综合中,许多问题属于非线性规划(NLP)和混合整数非线性规划(MINLP)范畴.它们大都具有奇异、多峰、刚性等特性.人们很难有效地得到它们稳定的全局最优解.而知识性、经验性约束使基于梯度方向的Newton方法无法有效地获取该类问题的全局最优解.通常只能得到该类问题的局部最优解.遗传算法的随机性虽为求取NLP和MINLP问题的全局最优解提供了可能,但是随机过程中的盲目性及"伪穷举"性却又限制了该算法的搜索效率.针对过程系统综合问题的特殊性,在信息提取技术对搜索空间进行充分数据挖掘的基础上,用遗传算法的随机扰动来跳出局部极值陷井,获得全局最优解.对反应器网络综合问题的求解,显示了信息提取技术与遗传算法相结合求取全局最优解的能力.Many problems in the process system synthesis belong to the non-linear problem (NLP) and mixed integrated non-linear problem (MINLP) category and they are almost singular, multipeaks and rigid. There is no effective means to get their stable global-optimal. Those solutions belong to local-optimal because Newton method based on grads, which subject to knowledge and experience didn't effectively get the solution domains of processing system synthesis. Although it is possible to get global-optimal by means of the randomicity of genetic algorithms, blindness and pseudo-enumeration of the randomicity may restrict the method search efficiency. The paper presents a way to combine information selection with genetic algorithms. Based on data mining in possible domains, the randomicity of genetic algorithms is used to dap out of the local-optimal trap. The test reactor networks synthesis showed that the method is effective and useful.

关 键 词:非线性规划 遗传算法 全局优化 数据挖掘 

分 类 号:O221.2[理学—运筹学与控制论] TP13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象