机构地区:[1]中国林业科学研究院资源信息研究所,北京100091 [2]中国科学院地理科学与资源研究所,北京100101 [3]马里兰大学地理系,马里兰20742
出 处:《林业科学》2006年第7期137-140,F0003,共5页Scientia Silvae Sinicae
基 金:国家863计划"遥感数据森林资源定量应用"(2002AA133050);国家林业局948课题"高精度激光雷达树高测量技术引进"(2004-4-64)资助
摘 要:Lidar (light detection and ranging) remote sensing is a breakthrough of active remote sensing technology in recent years. It has shown enormous potential for forest parameters retrieval. Lidar remote sensing has the unique advantage of providing horizontal and vertical information at high accuracies. Especially it can be used to measure forest height directly with unprecedented accuracy. Large footprint lidar has demonstrated its great potential for accurate estimation of many forest parameters. The geoscience laser altimeter system (GLAS) instrument aboard the ice, cloud and land elevation satellite (ICEsat) has acquired a large amount of data including topography and vegetation height information. Although GLAS’ primary mission is the topographic mapping of the ice sheets of greenland and antarctica, it has potential use over land, especially for vegetation height extraction. These data provide an unprecedented vegetation height data set over large area. After a general discussion of GLAS waveform pre_processing, the waveform length extraction method has been developed. Then the waveform length from GLAS Laser 2a data in the northeast China was calculated. The waveform length map was analyzed together with land cover map from Landsat ETM+. The waveform length shows good accordant with land cover types from Landsat ETM+ data. As for forest area, the waveform length map contains much more information about forest height information, which can be used to inverse other forest parameters quantitatively together with other remote sensing data.Lidar (light detection and ranging) remote sensing is a breakthrough of active remote sensing technology in recent years. It has shown enormous potential for forest parameters retrieval. Lidar remote sensing has the unique advantage of providing horizontal and vertical information at high accuracies. Especially it can be used to measure forest height directly with unprecedented accuracy. Large footprint lidar has demonstrated its great potential for accurate estimation of many forest parameters. The geoscience laser altimeter system (GLAS) instrument aboard the ice, cloud and land elevation satellite (ICEsat) has acquired a large amount of data including topography and vegetation height information. Although GLAS' primary mission is the topographic mapping of the ice sheets of greenland and antarctica, it has potential use over land, especially for vegetation height extraction. These data provide an unprecedented vegetation height data set over large area. After a general discussion of GLAS waveform pre-processing, the waveform length extraction method has been developed. Then the waveform length from GLAS Laser 2a data in the northeast China was calculated. The waveform length map was analyzed together with land cover map from Landsat ETM + . The waveform length shows good accordant with land cover types from Landsat ETM + data. As for forest area, the waveform length map contains much more information about forest height information, which can be used to inverse other forest parameters quantitatively together with other remote sensing data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...