Asymptotics for the Korteweg-de Vries-Burgers Equation  被引量:1

Asymptotics for the Korteweg-de Vries-Burgers Equation

在线阅读下载全文

作  者:Nakao HAYASHI Pavel I.NAUMKIN 

机构地区:[1]Department of Mathematics,Graduate School of Science,Osaka University,Osaka,Toyonaka,560-0043,Japan [2]Instituto de Matemáticas,UNAM Campus Morelia,AP 61-3(Xangari),Morelia CP 58089,Michoacán,Mexico

出  处:《Acta Mathematica Sinica,English Series》2006年第5期1441-1456,共16页数学学报(英文版)

基  金:The work of N. H.is partially supported by Grant-In-Aid for Scientific Research (A)(2) (No. 15204009);JSPS and The work of P. I. N. is partially supported by CONACYT

摘  要:We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equation ut+uux-uxx+uxxx=0,x∈R,t〉0. We are interested in the large time asymptotics for the case when the initial data have an arbitrary size. We prove that if the initial data u0 ∈H^s (R)∩L^1 (R), where s 〉 -1/2, then there exists a unique solution u (t, x) ∈C^∞ ((0,∞);H^∞ (R)) to the Cauchy problem for the Korteweg-de Vries-Burgers equation, which has asymptotics u(t)=t^-1/2fM((·)t^-1/2)+0(t^-1/2) as t →∞, where fM is the self-similar solution for the Burgers equation. Moreover if xu0 (x) ∈ L^1 (R), then the asymptotics are true u(t)=t^-1/2fM((·)t^-1/2)+O(t^-1/2-γ) where γ ∈ (0, 1/2).We study large time asymptotics of solutions to the Korteweg-de Vries-Burgers equation ut+uux-uxx+uxxx=0,x∈R,t〉0. We are interested in the large time asymptotics for the case when the initial data have an arbitrary size. We prove that if the initial data u0 ∈H^s (R)∩L^1 (R), where s 〉 -1/2, then there exists a unique solution u (t, x) ∈C^∞ ((0,∞);H^∞ (R)) to the Cauchy problem for the Korteweg-de Vries-Burgers equation, which has asymptotics u(t)=t^-1/2fM((·)t^-1/2)+0(t^-1/2) as t →∞, where fM is the self-similar solution for the Burgers equation. Moreover if xu0 (x) ∈ L^1 (R), then the asymptotics are true u(t)=t^-1/2fM((·)t^-1/2)+O(t^-1/2-γ) where γ ∈ (0, 1/2).

关 键 词:Korteweg-de Vries-Burgers equation asymptotics for large time large initial data 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象