检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xie Ping DING
出 处:《Acta Mathematica Sinica,English Series》2006年第5期1529-1538,共10页数学学报(英文版)
基 金:This project is supported by the NSF of Sichuan Education Department of China (2003A081 and SZD0406)
摘 要:A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.A new class of locally finite continuous topological spaces (for short, locally FC-spaces) and a class of system of generalized vector quasi-equilibrium problems are introduced. By applying a generalized Himmelberg type fixed point theorem for a set-valued mapping with KKM-property due to the author, a collectively fixed point and an equilibrium existence theorem of generalized game are first proved in locally FC-spaces. By applying our equilibrium existence theorem of generalized game, some new existence theorems of equilibrium points for the system of generalized vector quasi-equilibrium problems are proved in locally FC-spaces. These theorems improve, unify and generalize many known results in the literatures.
关 键 词:Generalized game System of generalized vector quasi-equilibrium problems KKM property Himmelberg type fixed point theorem Locally FC-space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198