检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Daciberg GONCALVES Jerzy JEZIERSKI Peter WONG
机构地区:[1]Departamento de Matemática-Instituto de Matemdtica e Estatística-Universidade de Sǎo Paulo,Caixa Postal 66.281-CEP 05311-970, Sǎo Paulo-SP, Brasil [2]Department of Mathematics, University of Agriculture, Nowoursynowska 166, 02766 Warszawa, Poland [3]Department of Mathematics, Bates College, Lewiston, ME 04240, USA
出 处:《Acta Mathematica Sinica,English Series》2006年第5期1591-1602,共12页数学学报(英文版)
基 金:This work was conducted in part during October 15-22, 2000 at the Stefan Banach International Mathematical Center at Warsaw and June 24-26, 2001 at the Mathematical Center at Bedlewo, supported by"Research in groups"grants
摘 要:Let f, g : X→Y be two maps between closed manifolds with dim X ≥ dim Y = n ≥ 3. We study the primary obstruction on(f, g) to deforming f and g to be coincidence free on the n-th skeleton of X. We give examples for which obstructions to deforming f and g to be coincidence free are detected by on (f, g).Let f, g : X→Y be two maps between closed manifolds with dim X ≥ dim Y = n ≥ 3. We study the primary obstruction on(f, g) to deforming f and g to be coincidence free on the n-th skeleton of X. We give examples for which obstructions to deforming f and g to be coincidence free are detected by on (f, g).
关 键 词:Nielsen number Reidemeister number coincidence theory obstruction theory
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.52